How to overcome fossil town?
What can be the part of planning and designing settlements?
How can development be influenced by municipalities and planners?

Of course it is not possible to find one simple ideal answer that fits for all planning tasks. The best solution for energy optimizing would be the one, which leads to a livable place where people like to live for generations. This means to find compromises between manifold aspects: social economic, aesthetic, functional, technical ...

In the frame of this training it is not possible to cover the art of planning and designing. But it is possible to show existing examples of good solutions and to help to analyze the “making of” and to characterize the main aspects leading to energy optimizing.

This means to simplify the complicated planning and designing process. Such a useful simplification is the identification of 10 main aspects, see slide 2.

Connection to other themes:
Legislation, energy carriers and renewable energy sources, quality control

Suggestion:
As next step we suggest a small planning and designing exercise: the task to find a scenario for energy optimized settlement, realization in near future for an exact defined plot. Task is to react to the requirements of this special plot but to integrate as much aspects as possible.
As useful simplification: the whole list of criteria for energy optimized settlement planning:

- The compactness of the settlement, short ways to places of interest or working places;
- Short ways to public transport;
- Social balance to get a sustainable living quality for generations;
- Plots to realize low energy or passive houses;
- Minimizing heat losses: presetting compact building types with good relation A/V (outer surface to inner volume);
- Maximizing passive solar gains: good grouping of houses to avoid shadow at the facades;
- Maximizing active solar gains: good orientation of roofs or providing areas for direct use of sun energy;
- Providing use of district heating: use of renewable as much as possible;
- Minimizing harm to the environment: reuse of land if possible;
- If new settlement: soil management - good use of soil, avoiding big transfers of materials;
- Rainwater management;
- Waste management.

Some more figures as background information:

Some aspects of energy saving urban planning should been proved during the planning process for generating energy savings with low efforts, only by optimizing the form and orientation of buildings. The potentials of measures can be estimated as follows:

1. compactness: difference of energy consumption between multi storey house and 5 row houses, both with similar energy standard: 20%
2. orientation: difference of energy gains between 5 houses with a bad orientation compared with a optimized orientation: 15%
3. passive solar gains, no shadows: difference between solar gains of a row of 5 houses without any shadow at the facade and the same row with shadow at the facade: 10 %
4. optimised roofs for active solar use: difference between solar gains of a optimized orientation of a roof and a bad orientated roof for the use of solar panels for hot water supply: 10 – 15%

See: UVP Handbuch der Stadt Köln Amt für Umweltschutz und Lebensmittelüberwachung/ Dr Goretzki/eboek Köln 1998
Two different cases may help to distinguish manifold ways to come to solutions for energy optimized settlement planning and designing.

Coburg solar optimized settlement is the one where it is easy to identify the main aspect at one glance: energy saving by maximizing active and passive solar gains.

Long rows of multi storey residential houses where orientated strictly to the south west. This focus on orientation can be followed also in the zoning of rooms in the floor plans.

The energy support is partly covered by solar power: solar thermal panels for warm water and heating and photovoltaic panels for electricity.

One further aspect is the compactness of buildings. Heat losses via building envelope where minimized by simple compact forms of buildings and by grouping stair cases outside the heated volume, see picture.

What cannot be recognized at first glance are special efforts for rain water management - rain water is collected on surface and not swallowed in by any drainage.

For more information about the project see:
http://www4.architektur.tu-darmstadt.de/powerhouse/db/248,id_93,s_Projects.en.fb15
key word solar house Coburg
In opposite to the first example, for Hannover Kronsberg it is not so easy to find the main aspects at the first glance. The plan looks not very special, the whole efforts to create an energy optimized sustainable settlement can only be found by taking a closer look.

No aspect is much stronger than the others.

Flats are grouped in residential or row houses to minimize losses via building envelope. They are mainly orientated in east west direction. Partly there are special efforts to prepare roofs for solar applications, for warm water and heating, see second photo.

Via land sale contracts energy standard for low energy houses and passive houses was fixed, see picture 1.

Energy supply is covered with cogeneration plants and supported by renewable, wind and solar power.

In order to come to the holistic approach of the whole settlement:

A new tramline was constructed, the blue line, so that all parts of the Kronsberg got short ways to public transport. Some efforts were done to mix functions: along the main street with the tram line are located shops and offices. In the near surroundings big companies offer working places.

The settlement is equipped with all kinds of infrastructure, shops for daily use, schools, kindergarten and meeting rooms for different activities.

A mixture of sizes and types of flats should guarantee a good social balance.

Efforts for soil, rainwater and waste management are done,

For more information see:
http://www.oekosiedlungen.de/kronsberg/steckbrief.htm, in German
short description in backgroundpaper page 22 ff
Which one of the typical “seven steps to passive house” has a linkage to urban planning/settlement planning?

Most of the typical measures to fulfil passive house requirements had to be undertaken on site and did not attract the neighborhood, like the doubling of insulation or the ventilation system. But the orientation to optimize active and passive solar gains are very important and in phase of design, the compactness had to been optimized, see the three small green boxes.

(about compactness see next slide)

If one house should fulfil passive house standard, the site had to be checked, if the orientation can be optimized. If a whole passive house settlement had to be planned, it had to be checked in frame of territorial planning, if the sites allows good orientation for the settlement. With detailed plans, the best orientation can be fixed.

(About solar orientation, see over next slide)

The big green box indicates the possibility of urban steering instruments to set an energy standard for a new settlement (national standard -30% or passive house standard, plus certification) The best possibility can be to use land sale contracts to fix these special standards.

More about examples for the “making of” municipal steering instruments, see background paper (link: http://www.intense-energy.eu/uploads/tx_triedownloads/INTENSE_HolisticPlanning_BG_062009.pdf)
This graph shows typical A/V relations (relation of outer surface to heated volume) of buildings.

The smaller the figure, the better the ratio, the more easy to optimize the building envelope.

It is easy to see, how these figures changes from detached houses, from houses with complicated forms to very simple formed multi storey houses.

The best ratio is easy to find at the biggest, simplest building.

All that means, the art of urban planning is to find a good compromise between energy efficient A/V ratio and living quality.
The picture left shows:

These very big distances between the buildings can lead to a conflict with the compactness of a settlement. You can see, that on the same ground three rows of houses find place instead of four.

Special software can help to find compromises. The simplest method is to use free ware „sketch up“, as shown on the right. (possibilities to insert location/ month/hour and tp play through shading situation)
One example for optimized orientation:

The first example of a „pure passive house settlement“ is Ulm Sonnenhalde, realization 1998-2000, 108 flats in row- and double houses.

The settlement is located on the south slope of a valley, so it is predestinated for solar settlement. Even in wintertime, solar gains are “guaranteed”.

As shown in the section picture two and three, the distance between the volumes is well balanced, using the slope situation.

The municipality owned the land and fixed via land sale contract, that the 8 involved investors had to prove their buildings as passive houses. They all passed the certification.

The situation on the slope leads is perfect for solar optimization, the types of houses (row houses) shows a good compromise between compactness and living comfort.
On example for optimized density:
The second example shows one of the biggest planned passive house settlements in Austria:
Vienna Aspanggründe. It is a typical brownfield development. Changes in railway transport systems
opens the possibility to reuse this area in the densely build up city.

The area will offer 400 new flats and working places in passive house standard.

In opposite to the first pure passive house example, here is strictly compactness/density the issue. The
more compact a building, the less the efforts to reach the passive house standard. In this case, most of
the buildings will be built as social residential homes.

But the orientation of the big buildings had been checked and optimized as good as possible, see
picture 1.
1. General remark:

The INTENSE partner municipality of Cesis offered the plot and plans. Cesis is elaborating a *NEW TERRITORIAL PLAN FOR CĒSIS MUNICIPALITY INCORPORATING ZONES FOR ENERGY EFFICIENT BUILDINGS* as one INTENSE mini project.

The plot is one of the possible areas for energy efficient buildings owned by municipality.

In this case some decisions are fixed by municipality and could not be influenced by “planners of the exercise”: the location of the plot in the town, distance to town center, the land use of plot and surroundings, distance to important infrastructure and distance to main axes of public transport.

This situation can be seen as typical task for a competition for urban planners or architects.

To organize the exercise as competition with working groups of competing teams brings in a fruitful “fever”.

In the first part of this presentation the task and the plot will be described in detail by adding some technical hints.

In the second part, the results of example group work from INTENSE 2nd Train the Trainers event will be shown and it will be brought out which of the ten criteria can be found in these scenarios.
The left plan shows the whole territory of Cesis without fixed scale. The location of the plot is marked to get an impression about distance to town center, main routes, station and the open field.

The right plan shows the plot. In a scale of 1:1000 it covers an A3 format. The scale is not very detailed but allows to show type, grouping and orientation of houses, parking places, public and private space. Numbers of storeys can be indicated.

The lines indicating the altitude: all 0,50 m

In the northern corner of the plot are located two old multi storey buildings. It is up to the competitors to renovate or demolish the buildings.

Material to prepare:
All competitors should get copies of both plans, transparent paper, different markers, copies of background material, see next slide.

All equipment should be easily available and usable in the usual conference rooms.
If this exercise takes place in the university, there are of course more possibilities: to use styro cutter and styro foam or other material to create also a model in three dimensions or to use CAD or sketchup for simple 3D sketches.
All competitors got a task list with some background material about the town and the list of the 10 criteria.

Experience shows that all background materials were read carefully by competitors and questions were asked for better understanding during the first hour. It was useful for organisers to go from table to table to ask for misunderstandings.
In this case the groups worked in two rooms – two groups in one room and three groups in other room. No problem!

The sizes of groups were different: three to five persons.

In this case this was obviously no problem to get all participants involved in the process but better are groups of three to four.

The groups got two working table plans, background material, transparent paper and flip chart paper to prepare the final presentation.

Two groups asked for using CAD. This causes no problems!
Material to prepare:
Looking for a place, where plans can be presented and all participants can have access to place the dots later on.
Preparation of small dots to glue for all participants.
Do not forget a small gift for the winning crew!
Do not forget to take photos of results and winning team!
Main idea of the scenario:

- Optimizing of orientation of row- and blockhouses for active and passive solar use. Economically reasonable building types.
- Houses and private gardens of row houses are embedded in green public space with lakes and rivers.
- Density decreases from north to south.
- The north east edge is formed as entrance of settlement with public uses, shopping.
- The old buildings would be renovated.
- Parking places are grouped and concentrated so that the inner part stays car free.
- Energy supply with district heating, using RES.
Main idea of the scenario:
Open public space, park, green with few solitaire houses of up to 10 storeys, see picture below.
Some infrastructure is integrated into the houses, except the sport yard, which is separated in the north east part of plot.
Public/social space is integrated into the solitaires Atrium as middle axe.

The old buildings would be renovated.
Parking places are grouped and concentrated so that the inner part stays car free.
Energy supply with district heating, using RES.